求实二次型f(x1,x2,x3,x4)=x1^2+x2^2+x3^2+x4^2+2x1x2-2x1x4-2x2x3+2x3x4的规范型
人气:290 ℃ 时间:2020-02-05 20:37:51
解答
x1^2+x2^2+x3^2+x4^2+2x1x2+2x2x3+2x3x4
= (x1+x2)^2+x3^2+x4^2+2x2x3+2x3x4
= (x1+x2)^2+(x3+x4)^2+2x2x3
= y1^2+y2^2+2y3^2-2y4^2
= z1^2+z2^2+z3^2-z4^2
推荐
- 用配方法化标准二次型:f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x2x3+2x2x4+2x3x4
- 求一个正交变换,把实二次型f(x1,x2,x3)=2X1x2+2X1x3-2X1X4-2X2X3+2X2X4+2X3X4化为标准型
- 二次型f(x1,x2,x3)=2x1x2+2x2x3-4x1x3的矩阵A为
- 求一个正交变换,化下列型为 标准型:f(x1,x2,x3,X4)=2x1x2+2x1 x3-2x2x3+2x2x4+2x3x4.x为未知数.
- 二次型f(x1,x2,x3)=2x^2-2x1x2+2x^2+2x2x3+2x3^2的矩阵A=
- The gap's being closed easily enables people to enjoy...
- 英语:so far this year we () a fall in house prices by between 3 and 5 percent
- I hate those people who like to take sth out of nothing.
猜你喜欢