第一个疑问:
这一步中,如果设(dx/dy)^(-1)=u的话,
这里的y处于自变量的位置,所以u是一个关于y的函数,
d/dx[(dx/dy)^(-1)]=du/dx
所以这个式子最终的自变量还是x
又因为y是关于x的函数
所以u是一个关于x的复合函数
所以d²y/dx²=d/dx[(dx/dy)^(-1)]=du/dx=(du/dy)(dy/dx)
第二个疑问:
这一步中,如果设dx/dy=t的话
(d/dy)[(dx/dy)^(-1)](dy/dx)
={d[t^(-1)]/dy}(dy/dx)
=[t^(-1)]'(dy/dx)
=-t^(-2)t'(dy/dx) 因为在t中,是将y视为自变量的,所以t'是t对y的导数
=-[(dx/dy)^(-2)](d²x/dy²)(dy/dx)
=-[(dx/dy)^(-2)][d²x/dy²)(dx/dy)^(-1)