一道一元函数的导数证明题
证明:双曲线xy=a^2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a^2.
没头绪啊,还请高人赐教……
人气:294 ℃ 时间:2020-02-04 23:24:19
解答
y=a^2/x
则y′=-a^2/x^2.
设P(t,a^2/t),则过点P的切线斜率为-a^2/t^2,
切线方程为y-a^2/t=(-a^2/t^2)(x-t),
于是Q(2t,0),R(0,2a^2/t).
(1).QR的中点(t,a^2/t)恰是点P.
(2).三角形OQR面积=|2t|*|2a^2/t|/2=2a^2.
推荐
猜你喜欢
- 松树比柏树多B棵,松树有A棵,一共有多少棵,用字母表示
- 实验中调整杠杆在水平位置平衡的目的是什么?
- Let's take the bus to the fruit shop(该同意句)
- 读写下面,猜猜是用宣传什么商品的,再将正确的词语写出来.
- 已知等比数列中,a1=2,公比q=1/2,则a5等于
- 金属能导电,电解质溶液也能导电,它们导电原理一样吗?请指出异同点
- 已知函数f(x)=ax^2+bx+c的图像经过点(-1,0),且不等式x≤f(x)≤(1/2)(1+x^2)对任意x∈R恒成立,求f(x)的解析
- 多项式AX^3,+2X^2-1与2X-3X^B的次数相同,则A,B应满足什么条件