>
数学
>
已知函数f(x)=x的四次方-4x的三次方+ax的平方-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
(1)求a的值 (2)是否存在实数b使得函数y(x)=bx的平方-1的图像与函数f(x)的图像恰好有2 个交点都存在,求出实数b的值,若存在试说明理由.
人气:442 ℃ 时间:2019-08-18 19:26:32
解答
(1)由于该函数的增减性在点x=1处改变,即有其导函数f(x)'=4x^3-12x^2+2ax在x=1处的取值等于0,即有f(1)'=4-12+2a=0,所以计算得a=4.
(2)有交点即有f(x)=x^4-4x^3+4x^2-1=bx^2-1.从该式可以看出在x=0处有解,此处有一个交点.现在排除x=0的情况,两边同时除以x^2,得到x^2-4x
+4=b,即b=(x-2)^2,由于只有两个交点,所以此处b只能使x有一个解,即有b=0,所以x=2是另一个交点.
推荐
已知函数f(x)=x的四次方-4x的三次方+ax的平方-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
已知函数f(x)=1/3的ax2-4x+3次方.(1)若a= -1求单调区间.(2)若f(x)有最大值3,求a(3).
求函数y=三分之一的(4x-x平方)次方的单调递减区间和值域
已知函数f(x)=x3X次方-4x平方.(1)确认函数f(x)在哪个区间是增函数?在哪个区间是减函数?
已知函数f(x)=(1/3)的ax²-4x+3次方 (1)若a=-1,求f(x)的单调区间,(2)若f(x)有最大值3,求a的值
24除以(1-0.5+25%)用简便方法做
求最新的空气污染的事例~ 谢喽!
出自【三国演义】的成语如【三顾茅庐】写5个
猜你喜欢
n2h4的与什么点燃生成n2化学方程式
妈妈茶杯底面直径6厘米高14厘米.一天我给妈妈泡了茶,茶水的高度是杯子高度的五分之七.这杯茶几毫升?
若变量x,y满足约束条件x≥−1y≥xx+y≤1则z=3x+y的最大值为_.
Who is good at playing basketball in your class? 翻译 速度
快乐的节日作文 春节 450字
如图,三角形ABC的面积是24平方厘米,AD=DE=EC,F是BC的中点,FG=GC,阴影部分的面积是_.
关于法制的手抄报.内容丰富,最好是有图!或者这些文字在哪写,那些哪那里写?
记一件事 作文
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版