过椭圆M:x2/a2+y2/b2=1的焦点F的弦交椭圆与点AB.求证1/AF+1/BF为定值
人气:377 ℃ 时间:2020-02-04 03:29:46
解答
先设直线的参数方程x=c tcosa y=tsina 代入椭圆得到关于t的一元二次方程 用韦达定理得到t1 t2 t1t2 1/AF 1/BF=1/t1 1/t2=(t1 t2)/t1t2 便可证明其为定值
推荐
- 过椭圆x2/a2+y2/b2=1(a>b>0)的一个焦点F作弦AB,若AF=d1,BF=d2,求1/d1+1/d2的值?
- 已知椭圆X^2/4+Y^2/3=1,F是其右焦点,过F作椭圆的弦AB,设|AF|=m,|BF|=n,则1/m+1/n 的值为?
- 过椭圆M:x^2/a^2+y^2/b^2=1(a>b>0)的焦点F的弦交椭圆于点A,B,求证:1/|AF|+1/|BF|的定值
- 过椭圆x2/4+y2/3=1左焦点F的直线L交椭圆于A、B两点,证明1/AF+1/BF为定值
- 已知椭圆x^2/4+y^2/3=1,F是其有焦点,过F作椭圆的弦AB,设AF=m,BF=n,则1/m+1/n的值为?
- all out-of-date和keep up的意思
- 写关联词 什么白天他攀山越岭什么 晚上仍继续画图计算
- 一项工程,甲单独做3小时完成这项工程的1/3,每小时完成这项工程的几分之几,再做几分之几小时可以完成?
猜你喜欢