已知y=f(x)为R上的可导函数,当x≠0时,
f′(x)+>0,则关于x的函数
g(x)=f(x)+的零点个数为( )
A. 1
B. 2
C. 0
D. 0或2
人气:112 ℃ 时间:2019-08-22 14:59:21
解答
由于函数g(x)=f(x)+1x,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,故我们考虑 xg(x)=xf(x)+1 的零点.由于当x≠0时,f′(x)+f(x)x>0,①当x>0时,(x•g(x))′=(xf(x))′=xf′(...
推荐
- 已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个数为( ) A.1 B.2 C.0 D.0或2
- 若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点的个数是_.
- 定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x^2-2^x,则函数f(x)在【0,2013】上零点个数
- (1)讨论函数f(x)=x^2-2|x|-a-1(a∈R)的零点的个数(详细过程)
- 试讨论函数f(x)=x2-2|x|-a-1 (a∈R)的零点个数 .
- 师于老马与蚁的译文,急要,
- ∫dx∫2(x+y)dy,其中第一个积分符号的上限是1,下限是0;第二个积分符号的上限是x,下限是0;
- 已知向量a=(1,2),向量b=(-2,n),向量a与b的夹角是45° (1)求b (2)若c与b同向,且c-a⊥a,求c
猜你喜欢