已知双曲线的两个焦点为F1(-根号10,0)、F2(根号10,0),M是此双曲线上的一点,且满足向量MF1点乘向量MF2=0
向量MF1的模乘向量MF2的模=2,则该双曲线的方程是
人气:219 ℃ 时间:2019-08-26 07:11:53
解答
由MF1*MF2=0可知,MF1⊥MF2,
在直角三角形MF1F2中,F1F2=2√10,由勾股定理|MF1|²+|MF2|²=|F1F2|²,有
|MF1|²+|MF2|²=40,
又已知|MF1|*|MF2|=2,
两式联立解得|MF1|或|MF2|=√11±3,
由双曲线定义有2a=|(|MF1|-|MF2|)|=|(√11+3)-(√11-3)|=6,所以a=3,又c=√10,可求得b=1
所以双曲线方程为x²/9-y²=1.
推荐
- 已知双曲线两焦点是F1(-√10,0)F2(√10,0)M是双曲线上的点,且向量MF1*x向量MF2=0,|MF1|*|MF2|=2求方
- 已知双曲线X2-Y2/2=1的焦点 为F1 F2 点M在双曲线上且向量MF1点乘向量MF2等于零,则点M到X轴的距离为多少
- 已知双曲线X方—Y方/2=1的焦点为F1 F2,点M在双曲线上且向量MF1乘向量MF2=0,则点M到X轴的距离为
- 双曲线x^2/4-y^2=1的两个焦点为F1,F2,点M在双曲线上,△F1MF2的面积为根号3,则向量MF1*向量MF2等于?
- 已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
- 升降机以速度v=4.9m/s匀速竖直上升,升降机内的天花板上有一个螺丝帽突然松脱,脱离天花板,已知升降机天花板到其地板的高度为h=14.7m.那么螺丝帽到升降机地板所需时间为 _ 秒.
- 打字,第一天500字,相当于稿的6分之1,弟二天打的是稿件的3分之1,第二天应打多少?
- 坐飞机能不能带望远镜?
猜你喜欢