设函数f(x)=a^2ln(x)-x^2+ax,a>0(1)求f(x)的单调区间;(2)若f(x)≤a^2对x∈(0,e]恒成立,求实数a的取值范
注:e为自然对数的底数
人气:457 ℃ 时间:2019-08-21 07:20:30
解答
定义域为x>0
1) f'(x)=a^2/x-2x+a=-1/x *(2x^2-ax-a^2)=-1/x*( 2x+a)(x-a)=0得极值点x=a,-a/2
若a>0,则当00,(0.,-a/2)为单调增区间
2)f(x)=a^2ln(x)-x^2+ax≤a^2
如果a∈(0,e],极值点f(a)=a^2lna
推荐
- 设函数在(-∞,+∞)上的增函数,如果不等式f(1-ax-x^2)
- 已知函数f(x)=x2+ax+1,f(x)在x∈[-3,1)上恒有f(x)≥-3成立,求实数a的取值范围.
- 已知函数f(x)=x^2+ax+3-a.当x属于[-2,2]时,f(x)大于等于0恒成立,求实数a的取值范围
- 已知函数f(x)=x平方-ax+In(x+1),(a属于R)问题:若函数f(x)在区间(0,1)上恒有f'(x)>x,求实数a的取值范
- (文)已知函数f(x)=x2+10x-a+3,当x∈[-2,+∞)时,f(x)≥0恒成立,求实数a的取值范围.
- 做一个长方体形状的鱼缸,长8分米,宽3分米,需要玻璃多少平方分米?
- Every boring hour in life is unique
- 英语翻译
猜你喜欢