![](http://hiphotos.baidu.com/zhidao/pic/item/503d269759ee3d6d4195af7c40166d224f4ade31.jpg)
则FD=F′D,FE=F″E.
DE+EF+FD=DE+F′D+F″E.
两点之间线段最短,可知当F固定时,DE+F′D+F″E的最小值就是线段F′F″的长.
于是问题转化:F运动时,F′F″什么时候最短.
F′,F″是关于B点对称的.
作AC关于AB、BC的对称线段,可以发现F′,F″是一个菱形对边上的关于中心B对称的对称点.
很容易发现,F′F″的最短距离就是菱形对边的距离,也就是菱形的高.
4×3×4 |
2 |
x=
24 |
5 |
24 |
5 |
故DE+EF+FD的最小值为
24 |
5 |
此时F在斜边上的高的垂足点,D、E在B点.