圆O是三角形ABC的内切圆,切点是D,E,F,三角形ABC的周长为18,BC=6求AE 重要的是过程
人气:144 ℃ 时间:2019-10-29 22:17:03
解答
因为圆O是三角形ABC的内切圆,切点是D,E,F
所以AF=AE,BD=BF,CD=CE,
所以2AE=AF+AE
=(AB-BF)+(AC-CE)
=AB+AC-(BF+CE)
=(AB+AC)-(BD+CD)
=AB+AC-BC
=(AB+AC+BC)-2BC=18-12=6
推荐
- 如图,圆O是三角形ABC的内切圆,切点分别为D,E,F,已知三角形ABC的周长为18,BC=6,求AE的长
- 如图,圆O是△ABC的内切圆,切点分别为D,E,F,已知△ABC的周长为18,BC=6,求AE的长.
- 已知圆O是三角形ABC的内切圆,切点D,E,F,如果AE=1,CD=2,BF=3,且三角形ABC的面积为6,求内切圆的半径
- 已知,圆O是三角形ABC的内切圆,若三角形的周长为18厘米,圆O的半径为3厘米,则三角形的面积为?
- 如图,AD、AE、CB均为⊙O的切线,D、E、F分别为切点,AD=8,则△ABC的周长为( ) A.8 B.10 C.12 D.16
- the call is busy now~
- 已知函数f(x)=x2+ax+b的两个零点是-2和3 (1)求a+b的值. (2)求不等式af(-2x)>0的解集.
- 换个角度思考问题和换个角度看待事情一样?
猜你喜欢