|
若f(x)奇函数,则f(-x)=-f(x)所以f(0)=-f(0),即f(0)=0.
∵f(0)=1≠0,
∴f(x)不是R上的奇函数.
又∵f(1)=1,f(-1)=3,f(1)≠f(-1),
∴f(x)不是偶函数.
故f(x)是非奇非偶的函数.
(2)当x≥2时,f(x)=x2+x-3,为二次函数,对称轴为直线x=−
1 |
2 |
则f(x)为[2,+∞)上的增函数,此时f(x)min=f(2)=3.
当x<2时,f(x)=x2-x+1,为二次函数,对称轴为直线x=
1 |
2 |
则f(x)在(-∞,
1 |
2 |
1 |
2 |
此时f(x)min=f(
1 |
2 |
3 |
4 |
综上,f(x)min=
3 |
4 |