已知抛物线y²sup2;=4x的焦点为F,直线l过M(4,0) 1、若点F到直线l的距离为√3,求直线l的斜率
2、设A、B为抛物线上的两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点横坐标为定值.
人气:429 ℃ 时间:2019-12-12 02:58:19
解答
1.y^2=4x,p=2,则有焦点坐标是F(1,0)
设直线L的方程是y=k(x-4)
那么有:|k(1-4)-0|/根号(1+k^2)=根号3
|3K|=根号3*根号(1+K^2)
3K^2=1+K^2
K^2=1/2
K=(+/-)根号2/2.
2.
设抛物线y^2=4x的两点A(x1 ,y1) B(x2,y2)
线段AB的垂直平分线恰过点M
再根据垂直平分线上的点到两端点的距离相等得
(4-x1)^2 +(y1)^2 =(4-x2)^2 +(y2)^2 (他们距离的平方是相等的,这里用点到点的距离的公式) 由题知(y1)^2 =4x1 (y2)^2=4x2
代入并展开得
16+(x1)^2 -8x1 +4x1=(x2)^2 -8x2 +16 +4x2
即(x1)^2 -(x2)^2 =4x1-4x2
即(x1-x2)(x1+x2)=4(x1-x2)
即x1+x2=4
线段AB中点的横坐标为(x1+x2)/2=2
所以是定值
推荐
- 已知直线L经过抛物线y²=2Px(p>0)的焦点F且与抛物线交于AB两点,若向量AF=4向量BF,求直线AB的斜率
- 设斜率为2的直线L过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则
- 设斜率为2的直线l过抛物线y²=2px(p>0)的焦点F,且与y轴交于点A,△OAF(0为坐标原点)的面积为4
- 斜率为-1的直线过抛物线y²=-4x的焦点F,且与抛物线交于A,B两点,求线段AB的长
- 斜率是1的直线经过抛物线y2=4x的焦点,与抛物线相交于A、B两点,则线段AB的长是( ) A.2 B.4 C.42 D.8
- 等差数列{an}的首项a1=1,
- 如图已知∠AOB是∠AOC的余角
- 已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成( ) A.ba B.10b+a C.100b+a D.100b+10a
猜你喜欢