设斜率为2的直线l过抛物线y²=2px(p>0)的焦点F,且与y轴交于点A,△OAF(0为坐标原点)的面积为4
则此抛物线的方程
人气:346 ℃ 时间:2020-03-24 08:23:32
解答
直线方程可设为y=2(x-p/2),令x=0,得y=p,即A(0,p),△OAF(0为坐标原点)的面积为4,即1/2*OF*OA=4所以1/2*p/2*p=4,故,p=4,抛物线方程为y²=8x
推荐
- 设斜率为2的直线L过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则
- 设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( ) A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x
- 设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( ) A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x
- 设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( ) A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x
- 已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,B两点,设满足AB模=3√5求抛物线和直线l方程
- 4个连续奇数的最小公倍数是315,这四个奇数中最大的一个数是( )
- 艇在静水中航行的速度是10km/h,当它在流速是2km/h的河水中保持船头垂直于河岸的方向渡河时,求合速度的大小.
- 某工程由甲乙两队合做6天完成,厂家需付甲乙两队共8700元;乙丙两队合做10天完成,厂家需付乙丙两队共9500元;甲丙两队合做5天完成全部工程的三分之二,厂家需付甲丙两队共5500元.
猜你喜欢