f(x)=根号3×sin(x/4)cos(x/4)+(cosx/4)^2
=根号3/2*sinx/2+(cosx/2+1)/2
=sinx/2cosPai/6+sinPai/6cosx/2+1/2
=sin(x/2+Pai/6)+1/2
f(x)=1,即有sin(x/2+Pai/6)=1/2
即有cos(Pai/2-x/2-Pai/6)=cos(Pai/3-x/2)=1/2
cos(2Pai/3-x)=2[cos(Pai/3-x/2)]^2-1=2*1/4-1=-1/2
(2)acosC+1/2c=b
acosC+1/2c=b,则2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC,所以sinC=2cosAsinC,得cosA=1/2,A=60°
0