设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数x,把b放在a的左边,组成一个五位数y,试问9能否整除x-y?请说明理由.
人气:241 ℃ 时间:2019-08-19 20:40:41
解答
依题意可知:x=1000a+b,y=100b+a,
∴x-y=(1000a+b)-(100b+a)
=999a-99b=9(111a-11b),
∵a、b都是整数,
∴9能整除9(111a-11b).
即9能整除x-y.
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?