1.微分在近似计算中的应用:
要在半径r=1cm的铁球表面上镀一层厚度为0.01cm的铜,求所需铜的重量W(铜的密度k=8.9g/cm^3)(说明:cm^3后面的3是幂,也就是立方厘米,下面的r^3也是指r的3次方,依此类推)
先求镀层的体积,再乘以密度,便得铜的质量.显然,镀层的体积就是两个球体体积这差.设球的体积为V,则V=f(r)=4πr^3/3 由题意可取r'=1,
△r=0.01 于是,△V≈dV=f'(r')△r=f'(1)*0.01,
而f'(1)=(4πr^3/3)'|r'=4π
所以铜的体积约为dV=f'(1)*0.01=4π*0.01≈0.13(cm^3)
于是镀铜的质量约为dW=kdV≈0.13×8.9≈1.16(g)
2.定积分在物理学中的应用:
根据虎克定律,弹簧的弹力与形变的长度成正比.已知汽车车厢下的减震弹簧压缩1cm需力14000N,求弹簧压缩2cm时所作的功.
由题意,弹簧的弹力为f(x)=kx(k为比例常数),当x=0.01m时
f(0.01)=k×0.01=1.4×10^4N
由此知k=1.4×10^6,故弹力为f(x)=1.4×10^6x
于是,W=∫上标0.02下标0(1.4×10^6x)dx=1.4×10^6*x^2/2|上标0.02下标0
=280(J),即弹簧压缩2cm时所作的功为280J.