| x+y |
| xy |
| 2 |
| p |
| 2xy |
| p |
所以p整除2xy,且p为奇质数,所以p整除xy,进而p整除x或y,
不妨设x=tp,则tp+y=2ty,得y=
| tp |
| 2t−1 |
所以2t-1=1或2t-1=p,
若2t-1=1,得t=1,x=y=p,与x≠y矛盾;
若2t-1=p,则
| x+y |
| xy |
| 2 |
| p |
∵P是奇质数,则x+y为偶数,x、y同奇偶性、只能同为xy=
| p(x+y) |
| 2 |
ay=
|
∴y=
| ap |
| 2a−1 |
到此可知,a、2a-1互质,2a-1整除P,又P是质数,则2a-1=p,a=y=
| (p+1) |
| 2 |
x=
| (p+1) |
| 2 |
| p(p+1) |
| 2 |
∴x+y=
| p(p+1) |
| 2 |
| (p+1) |
| 2 |
| (p+1)2 |
| 2 |
