已知A,B,C为三角形ABC的三个内角,且其对边分别为a,b,c,若向量m=(2cosA/2,tanA),向量n=(-cosA/2,cosA),
且向量mn=1/2.(1)求角A;(2)若b+c=4,三角形ABC的面积为√3,求a.
改正:向量n=(-cosA/2,cotA)
人气:237 ℃ 时间:2019-08-20 13:13:36
解答
(1)
∵向量m*向量n=-2[cos(A/2)]^2+tanA*cotA=-(cosA+1)+1=-cosA=1/2
∴cosA=-1/2
∵A是△ABC的内角
∴A∈(0,π)
∴A=2π/3.
(2)
∵S△ABC=(1/2)bcsinA=(1/2)bcsin(2π/3)=(1/2)bc*(√3)/2=(√3)bc/4=√3
∴bc=4
∵b+c=4
∴(b+c)^2=b^2+2bc+c^2=b^2+c^2+8=16
∴b^2+c^2=8.
由余弦定理:(b^2+c^2-a^2)/(2bc)=(8-a^2)/(2*4)=cosA=cos(2π/3)=-1/2
解得:a=2√3.
推荐
- 已知A、B、C为三角形ABC的三内角,其对边分别为a、b、c,若向量m=(2cosA/2,tanA),向量n=(-cosA/2,cotA),
- 已知A,B,C是三角形ABC三内角,向量m=(-1,根号3),n=(cosA,sinA),且m*n=1
- 三角形ABC中.角A,B,C的对边分别为a,b,c.已知向量m=(2cosA/2,sinA/2),n=(cosA/2,_2sinA/2),m·n=-1
- 已知a,b,c为三角形ABC的三个内角A,B,C的对边,向量m=(根3,-1),n=(cosA,sinA).
- 已知a,b,c为△ABC的三个内角A,B,C的对边,向量m=(3,-1),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,则角B=_.
- 已知二次函数y=x^2-x+a(a大于0),当自变量x取m时,其相应的函数值小于0,那么正确的是( ).
- 解决一道选词填空题〔A嘹亮 B响亮 C洪亮〕
- 小明3/10小时步行14/15千米,他1小时能行_千米,他行1千米需要_小时.
猜你喜欢