已知椭圆X^2/a^+Y^2/b^2=1上有一点P,F1F2为椭圆的焦点,若∠F1PF2=θ,求△F1PF2的面积
我知道答案是b^2tan(θ/2),可是是怎么解的啊?谁会?
人气:487 ℃ 时间:2019-08-21 00:13:18
解答
设:PF1=M,PF2=N,由定义得:M+N=2a,(M+N)2=4a2
F1F22=4c2=4a2-4b2
又F1F22=M2+N2-2MNcosθ(余弦定理)
=(M+N)2-2MN-2MNcosθ
即4a2-4b2=4a2-2MN-2MNcosθ
所以MN=2b2/(1+cosθ)
SΔF1F2P=MNsinθ/2=b2sinθ/(1+cosθ)=b^2tan(θ/2)
推荐
- 已知P是椭圆x25+y24=1上一点,F1和F2是焦点,若∠F1PF2=30°,则△PF1F2的面积为( ) A.433 B.4(2−3) C.4(2+3) D.4
- 椭圆x^2/5+y^2/4=1上有一点P,与焦点F1F2夹角∠F1PF2=60°,求△F1PF2的面积
- 椭圆x225+y29=1的焦点F1F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为_.
- 点P是与椭圆x^2/16+y^2/9=1上一点,F1F2是其焦点,若∠F1PF2=90°,则△F1PF2的面积是
- 已知F1F2是椭圆x^2/9+y^2/6=1的左右两个焦点,P是椭圆上的点 若∠F1PF2=60° 求△F1PF2的面积
- 、用水平拉力拉着小车在光滑水平面上向右运动,当拉力的方向不变,大小逐渐减小时
- 在一个正方形里面画一个最大的圆,这个圆的周长是这个正方形的(),这个圆的面积是正方形的()
- 设limx→-1 (x^3+ax^2-x+4)/x+1=b(b为非零常数),求a,b
猜你喜欢