设3元线性方程组AX=b,A的秩为2,n1,n2,n3为方程组的解,n1+n2=(2,4,0)^T,n1+n3=(1,-2,1)^T,则对任意常数k,方程组Ax=b的通解为什么,
人气:191 ℃ 时间:2019-11-17 20:54:48
解答
由于方程组是非齐次的 它的解等于它本身的一个解加上它的齐次方程组的解
它的齐次方程组的解直接用n2-n3就得到了 也就是(1,6,-1)T
推荐
- 设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明: (1)向量组η1,η1-η2线性无关; (2)若秩r(A)=n-1,则向量组ξ,η1,η2线
- 求一个齐次线性方程组AX=0,使得向量组n1=(1,2,3,4)∧T,n2=(4,3,2,1)∧T是它的一个基础解系
- 已知n1,n2,n3为齐次线性方程组AX=0的基础解系
- 设三元非齐次线性方程组的系数矩阵的秩为1,已知n1,n2,n3是他的三个解向量,
- 在4元非齐次线性方程组AX=b中,已知r(A)=2 n1 n2 n3为方程组三个线性无关的解 则AX=b通解?
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢