k |
2 |
∴f′(x)=
1 |
1+x |
kx2+(k−1)x |
1+x |
令g(x)=kx2+(k-1)x,k≥0,x>-1
(1)当k=0时,g(x)=-x
当-1<x<0时,g(x)>0,所以f′(x)>0,函数f(x)在(-1,0)上单调递增,
当x>0时,g(x)<0,所以f′(x)<0,函数f(x)在(0,+∞)上单调递减,
(2)当k≠0时,g(x)=x[kx+(k-1)]
令g(x)=x[kx+(k-1)]=0,解得x=0,或x=
1 |
k |
①当
1 |
k |
当
1 |
k |
当
1 |
k |
1 |
k |
当x>0时,g(x)>0,所以f′(x)>0,函数f(x)在(0,+∞)上单调递增,
②当
1 |
k |
当0<x<
1 |
k |
1 |
k |
当x>
1 |
k |
1 |
k |
③当k=1时,g(x)≥0,所以f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,