已知向量a=(sinx,cosx),b=(cosx,cosx)已知函数f(x)=a(a+b)
1求f(x)最小正周期2.使不等式f(x)大于等于3/2成立的x的取值范围
人气:313 ℃ 时间:2019-08-17 22:01:02
解答
根据题意:
a+b=(sinx+cosx,2cosx)
a=(sinx,cosx);
所以:
f(x)=sinx(sinx+cosx)+2cosx*cosx
=sin^2x+cos^2x+sinx*cosx+cos^2x
=(cos2x+1)/2+sin2x/2+1
=(1/2)(sin2x+cos2x)+3/2;
=(√2/2)sin(2x+П/4)+3/2;
1.Tmin=2П/w=2П/2=П.
2.f(x)>=3/2
(√2/2)sin(2x+П/4)+3/2>=3/2
sin(2x+П/4)>=0
所以:
2kП
推荐
- 已知向量a=(sinx,-cosx),b=(cosx,√3cosx),函数f(x)=a*b+(√3)/2
- 已知向量A(M,1)B=SINX,COSX,F(X)=A.B且满足F(π/2)=1,求函数F(X)的解析式
- 设向量a=(sinx,cosx),向量b=(cosx,cosx),x∈R,函数f(x)=向量a•(向量a+向量b)
- 已知向量a=(5根号3cosx,cosx)b=(sinx,2cosx),函数f(x)=ab+b^2,求F(X)最小正周期
- 已知向量a=(sinx,cosx),b=(sinx,sinx)若x∈[-3π/8,π/4]函数f(x)=λa*b的最大值
- ---I am so glad to see you here .I miss you very much .
- n是自然数,N=[n+1,n+2,...,3n]是n+1,n+2,...,3n的最小公倍数,如果N可以表示成N=2^10*奇数,n的可能值有几个?
- 三个粮站共有面粉1400千克,甲站与乙站的面粉的质量比是3:4,乙站与丙站的面粉质量比是6:7,三个粮站各有
猜你喜欢