a−2 |
a−1 |
a(a−1) |
(a−2)2 |
=
a |
a−2 |
当a=1时,原式=
1 |
1−2 |
(2)原式=
(x−1)(x+1)−x(x−2) |
x(x+1) |
(x+1)2 |
x(2x−1) |
=
2x−1 |
x(x+1) |
(x+1)2 |
x(2x−1) |
=
x+1 |
x2 |
∵x满足x2-x-1=0,
∴x2=x+1,
∴原式=
x+1 |
x+1 |
1 |
a−1 |
a2−4a+4 |
a2−a |
x−1 |
x |
x−2 |
x+1 |
2x2−x |
x2+2x+1 |
a−2 |
a−1 |
a(a−1) |
(a−2)2 |
a |
a−2 |
1 |
1−2 |
(x−1)(x+1)−x(x−2) |
x(x+1) |
(x+1)2 |
x(2x−1) |
2x−1 |
x(x+1) |
(x+1)2 |
x(2x−1) |
x+1 |
x2 |
x+1 |
x+1 |