设A为3阶矩阵,a1,a2为A的分别属于特征值-1和1的特征向量,a3满足Aa3=a2+a3.证明a1,a2,a3线性无关
人气:337 ℃ 时间:2019-10-23 08:28:29
解答
证明:设 k1a1+k2a2+k3a3=0 (1)
则 k1Aa1+k2Aa2+k3Aa3=0
由已知得 -k1a1+k2a2+k3(a2+a3)=0
即有 -k1a1+(k2+k3)a2+k3a3=0 (2)
(1)-(2):2k1a1-k3a2 = 0
因为 a1,a2为A的分别属于特征值-1和1的特征向量,
故 a1,a2 线性无关
所以 k1=k3=0
代入 (1) 知 k2 = 0
故 a1,a2,a3线性无关.
推荐
- 设A为3阶矩阵,a1,a2分别为A的属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2,a3线性无关;令P=(a1,a2,a3),求P^-1AP
- 设三阶矩阵A的三个特征值为1,1,2,且a1,a2,a3分别为对应的特征向量,则
- 已知3阶实对称矩阵A的3个特征值a1=0,a2=a3=2,且特征值0对应的特征向量为(1,0,-1)^T,求矩阵A
- 设A是3阶矩阵,a1a2a3是三维线性无关的列向量,且Aa1=4a1-4a2+3a3 Aa2=负6a1-a2+a3 Aa3=0.求矩阵A特征值
- 设A为你三方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,令P=(a1,a2,a3),求P-1AP.
- mime and guess 翻译成汉语怎么说?
- 小明和小芳在讨论“能否用蜡烛燃烧法来粗略测定空气中氧气的含量”这一问题时,小芳认为:通过图l装置,用蜡烛燃烧法测得空气中氧气的含量会 _ (填“偏 高”、“偏低”或“不变”
- 英语翻译
猜你喜欢