f(x)=ax^3+bx^2+cx+d在x=-2和x=2/3处取极值,解不等式
f(-3-2x^2)>f(-x^2+2x-4)
人气:460 ℃ 时间:2020-10-01 20:55:53
解答
由于有两个极值点,从而a不为零.求导得
f'(x)=3ax^2+3bx+c,
由条件知,x=-2和x=2/3是f'(x)=0的两个根.
于是
(1)若a>0,令f‘(x)>0,解得 x2/3,
即f(x)在(-无穷,-2)和(2/3,+无穷)上是增函数,
由于 -3-2x^2,-x^2+2x-4都属于(-无穷,-2),
从而原不等式可化为
-3-2x^2>-x^2+2x-4
即x^2+2x-1
推荐
猜你喜欢
- 表示"想"的四字成语
- 销售给红星工厂甲产品100件,每件售价300元,计30000元,增值税销售项税额5100元,款项己收银行存款户
- 火星—地球之间有什么关系?
- 某工厂去年实际产值2400万元,比计划增长3/5,计划产值多少万元?
- 鸡的脚比兔的脚少24只,鸡有多少只,兔有多少只?
- 为你的幸福,我会不惜一切代价英文怎么说?
- 关于正方形剪成三角形的问题
- 某市中学生举行足球赛,共赛17轮,计分方法是胜一场得3分,平一场得1分,负一场得0分,在这次足球赛中,若