![]() |
| AD |
![]() |
| AC |
![]() |
| CD |
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
![]() |
| AC |
![]() |
| AE |
∴
![]() |
| AE |
![]() |
| CD |
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=
| CF |
| BF |
| 3 |
| 4 |
得BF=
| 32 |
| 3 |
∴由勾股定理,得BC=
| CF2+BF2 |
| 40 |
| 3 |
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
| AC |
| BC |
| 3 |
| 4 |
| 40 |
| 3 |
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ=
| AC2 |
| BC |
| 15 |
| 2 |
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴
| AF |
| FG |
| FP |
| BF |
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.





