> 数学 >
设集合A={x|x^2-3x+2=0,x∈R} B={x|2x^2-ax+2=0 x∈R 若A∪B=A,求实数a的取值范围
人气:127 ℃ 时间:2019-08-20 13:47:03
解答
由A∪B=A可知,B可能为空集,也可能为A的非空真子集,也可能为A,所以本题分三种情况讨论
由x^2-3x+2=0得x=1或2
所以A={1,2}
当B为空集时,即方程2x^2-ax+2=0无解
△=a^2-4*2*2<0
解得-4当B为A的非空真子集时
即B中的方程的解为等根1,或者等根2
因为对于B,x1*x2=1
所以只能为等根1,
由x1+x2=2=a/2得,
a=4,满足条件
当A=B时
则1,2是方程2x^2-ax+2=0的根,代入得a无解
综上可得
a的取值范围是-4
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版