若lim[f(x)+f'(x)]=0,x趋于正无穷且f'(x)在0到正无穷上连续,证明limf(x)=limf'(x)=0,x趋于正无穷.
急
人气:103 ℃ 时间:2019-08-19 13:10:45
解答
无穷/无穷型的洛必达法则
lim f(x)=lim e^xf(x)/e^x 洛必达法则得
=lim e^x(f(x)+f'(x)/e^x
=lim f(x)+f'(x)
=0,
于是lim f'(x)=lim f(x)+f'(x)-f(x)
=lim f(x)+f'(x)-lim f(x)
=0
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译