若x,y为正实数,且x+y=4,求根号下x的平方+1与根号下y的平方+4的和的最小值.
人气:363 ℃ 时间:2019-08-20 14:09:49
解答
√(x^2+1)+√(y^2+4)
=√(x^2+1)+√[(x-4)^2+4]
=√[(x-0)^2+(0-1)^2]+√[(x-4)^2+(0-2)^2]
设A(0,1) B(4,2) A‘(0,-1) M(x,0) (0
推荐
- 若x,y为实数,且y=x+2分之根号下(x平方-4)+根号下4-x的平方+1 求根号下x+y乘根号下x-y的值
 - 若x,y为正实数,且x+y=4,求根号下x的平方+1与根号下y的平方+4的和的最小值.用不同方法
 - 已知y=(根号下(x的平方-4)+根号下(4-x的平方)+1)/2,其中x,y为实数,求根号下(x+y)的值.
 - 设x、y为正实数,且x+y=4,求根号(x^2+1)+根号(y^2+4)的最小值.
 - xy为正实数,且x+y=4,求根号x*2+1+根号y*2+4的最小值
 - “all of us had no money on us”怎么理解它是部分否定呢?
 - 马叔叔、王叔叔、李叔叔三家合租了一套三居室的房.
 - 关于中秋节的来历?
 
 
猜你喜欢