> 数学 >
利用数列单调必有极限的法则证明此数列存在极限1/(1+3) + 1/(1+3²)+……+1/(1+3^n)
俺比较穷~~~就...就只给5分啦.大虾们,999999啦
人气:319 ℃ 时间:2020-06-21 10:17:35
解答
通项为an=1/(1+3^n)
设Sn为前n项和,那么S(n+1)-Sn=a(n+1)=1/[1+3^(n+1)]>0
∴该数列单调递增
又an=1/(1+3^n)<1/3^n
∴Sn=1/(1+3)+1/(1+3²)+…+1/(1+3^n)
<1/3+1/3²+…+1/3^n
=1/2(1-1/3^n)
<1/2
∴0根据单调有界数列数列存在极限知该数列存在极限
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版