> 数学 >
三重积分∫∫∫z∧2dv,其中Ω是由球面x∧2+y∧2+z∧2=2z所围成的闭区域
人气:311 ℃ 时间:2020-06-30 20:27:13
解答
截面法:用竖坐标为z的平面截立体,得截面为Dz:x²+y²≤2z-z²
∫∫∫z²dv
=∫[0→2] (∫∫z²dxdy )dz 里面的二重积分积分区域为Dz:x²+y²≤2z-z²
=∫[0→2] z²dz ∫∫1dxdy
被积函数为1,积分结果为区域面积,Dz面积为:π(2z-z²)
=π∫[0→2] z²(2z-z²)dz
=π∫[0→2] (2z³-z⁴)dz
=π[(1/2)z⁴-(1/5)z⁵] |[0→2]
=8π/5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版