若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点.
点P(0,t)(t>0),且满足AB向量=λPB向量(λ>1)
(1)求曲线E方程(这我会,x^2=4y)
(2)第二问是:若t=6,直线AB的斜率为 1/2,过A、B两点的圆N与抛物线在点A出有共同的切线,求圆N的方程.
(3)分别过A,B作曲线E的切线,两条切线交与Q,若点Q恰好在直线l上,求证:t与QA*QB(向量)均为定值
人气:424 ℃ 时间:2020-04-18 08:45:33
解答
(2)
【分析】求导可得抛物线E的斜率=1/2 --> 求出A的坐标
∵抛物线E:y=x^2/4 ①,由y'=x/2=1/2得:x=1,代入①得y=1/2,∴A(1,1/2)
设直线AB:y=(x/2) + b,则b=y - (x/2)=1/2 - 1/2=0,直线AB:y=x/2
【联立抛物线E和直线AB,可求出B点坐标】
由x^2=4y和x=2y,得B(2,1)
【圆N的圆心一定在AB的中点上AB中点(1.5,0.75)】
∵AB中点(1.5,0.75),圆N的半径的平方=线段AB的一半的平方=[(2-1)^2+(1-1/2)^2]=[1+1/4]=5 /2
∴圆N:(x-1.5)^2+(y-0.75)^2=5/2
推荐
- 已知动圆与直线X=-1相切,且过定点F(1,0)动圆的圆心为M,1求点M的轨迹C的方程2若直线过点(5,0)且与曲线C
- 已知动圆M过定点(1,0),且与直线x=-1相切,求动圆M的圆心轨迹C的方程.
- 已知圆C过定点F(-1/4,0),且与直线x=1/4相切,圆心C的轨迹为E,曲线E与直线
- 若圆M与定圆C:x²+y²+4x=0相切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为
- 若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A,B为曲线E上的两点.求曲线E的方程.
- 读一本书已经读的页数是未读的百分之二十如果再读240页那么读的页数是没读的5倍这本书共有多少页
- 英语翻译
- do did does was的用法
猜你喜欢