设P(x,y)是曲线C:{x=-2+cosθ ,y=sinθ }(θ 为参数,0≤θ <π)上任意一点,则y/x的取值范围是
人气:100 ℃ 时间:2019-11-24 20:16:19
解答
为了求解方便,设t=y/x
∵x=-2+cosθ ,y=sinθ
∴t=sinθ/(-2+cosθ)
==>tcosθ-2t=sinθ
==>2t=tcosθ-sinθ
==>2t/√(t²+1)=tcosθ/√(t²+1)-sinθ/√(t²+1)
令sina=t/√(t²+1),则cosa=1/√(t²+1)
∴2t/√(t²+1)=sinacosθ-cosasinθ
=sin(a-θ)
∵│sin(a-θ)│≤1
∴2│t│/√(t²+1)≤1
==>2t/√(t²+1)≤1
==>4t²≤t²+1
==>3t²≤1
==>-√3/3≤t≤√3/3
故y/x的取值范围是[-√3/3,√3/3].
推荐
- 已知点P(x,y)在曲线x=-2+cosθ,y=sinθ (θ为参数)上,则y/x的取值范围为
- 已知点P(x,y)在曲线x=−2+cosθy=sinθ(θ为参数,θ∈[π,2π))上,则y/x的取值范围为_.
- (已知曲线C的参数方程为{x=2+cosθ,y=1+sinθ(θ∈[0,π]),且点P(x,y)在曲线C上,则(y+x-1)/x的取值范围
- 直线l过点P(1,0),l页曲线C:X=√2*cosΘ,Y=sinΘ(Θ为参数)相交于两个不同的点A,B,求PA*PB的取值范围,求详细过程.
- 点P(X,Y)是曲线C;{X=-2+COSΘ Y=sinΘ(0
- 如何用一个质量为m的钩码,一把刻度尺,一只铅笔和一些细绳来测量一根长1米左右粗细均匀的细木棒的质量
- 257,198,259,173,261,168,263,()
- 如图所示,一物块在恒定的水平拉力F的作用下,沿水平地面10s内匀速前进了5m,拉力做了50J的功.求: (1)物块的速度; (2)拉力做功的功率; (3)物块受到地面的摩擦力.
猜你喜欢