> 数学 >
已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求CC1到平面A1AB的距离;
(Ⅲ)求二面角A-A1B-C的大小.
人气:199 ℃ 时间:2019-08-20 04:48:04
解答
(I)证明:因为A1D⊥平面ABC,所以平面AA1C1C⊥平面ABC,
又BC⊥AC,所以BC⊥平面AA1C1C,
得BC⊥AC1,又BA1⊥AC1
所以AC1⊥平面A1BC;(4分)
(II)因为AC1⊥A1C,所以四边形AA1C1C为菱形,
故AA1=AC=2,又D为AC中点,知∠A1AC=60°.
取AA1中点F,则AA1⊥平面BCF,从而面A1AB⊥面BCF,
过C作CH⊥BF于H,则CH⊥面A1AB,
在Rt△BCF中,BC=2,CF=
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版