证:lg((a b)/2) lg((b c)/2) lg((c a)/2〉lga lgb lgc
a,b,c是不全相等的正数
人气:274 ℃ 时间:2020-04-08 13:01:51
解答
你的题目是:已知a,b,c是不全相等的正数.求证:lg(a+b/2)+lg(b+c/2)+lg(a+c/2)>lga+lgb+lgc吧.
如果是,则解答如下:
证明:
lg(a+b/2)
```````___
≥lg(√ab)
=(1/2)*lg(ab)
=(1/2)*(lga+lgb)
=(1/2)*lga+(1/2)*lgb
即lg(a+b/2)≥(1/2)*lga+(1/2)*lgb
同理lg(a+c/2)≥(1/2)*lga+(1/2)*lgc
lg(b+c/2)≥(1/2)*lgb+(1/2)*lgc
以上三式相加便得
lg(a+b/2)+lg(b+c/2)+lg(a+c/2)≥lga+lgb+lgc
又因为a,b,c不全相等,所以等号不成立.
所以lg(a+b/2)+lg(b+c/2)+lg(a+c/2)>lga+lgb+lgc
推荐
猜你喜欢
- The farmer soon came back to get his shoes,but when he put his foot into one of his shoes and felt something hard,he fou
- 求y=lnx在点M(e,1)的切线方程和法线方程.
- It feel like three
- 骨骼不含钙有没有无机盐
- 硫酸铵和硫酸铁铵的ph值大小
- A.refresh B.renew C.stimulate D.encourage
- 如图所示,在△ABC中,AB=AC,点MN分别在BC所在的直线上,且AM=AN,BM与CN相等吗?两种解答方法.
- 巳知电压为380v功率45千瓦,用多大的空气开关,线的大少,是怎么算的!请高手多指教谢谢了.