| a |
| b |
所以,f(x)=(sinx+2cosx)sinx+3cosx•cosx
=1+sin2x+1+cos2x
=
| 2 |
| π |
| 4 |
所以,当2x+
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
f(x)取得最大值
| 2 |
(2)由(1)由知f(x)的最小正周期是π,
由2kπ−
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
所以f(x)在[0,π]上的递增区间为[0,
| π |
| 8 |
| 5π |
| 8 |
∴f(x)的最大值为
| 2 |
| π |
| 8 |
| 5π |
| 8 |
| a |
| b |
| a |
| b |
| a |
| b |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| 2 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| 5π |
| 8 |
| 2 |
| π |
| 8 |
| 5π |
| 8 |