a |
b |
所以,f(x)=(sinx+2cosx)sinx+3cosx•cosx
=1+sin2x+1+cos2x
=
2 |
π |
4 |
所以,当2x+
π |
4 |
π |
2 |
π |
8 |
f(x)取得最大值
2 |
(2)由(1)由知f(x)的最小正周期是π,
由2kπ−
π |
2 |
π |
4 |
π |
2 |
3π |
8 |
π |
8 |
所以f(x)在[0,π]上的递增区间为[0,
π |
8 |
5π |
8 |
∴f(x)的最大值为
2 |
π |
8 |
5π |
8 |
a |
b |
a |
b |
a |
b |
2 |
π |
4 |
π |
4 |
π |
2 |
π |
8 |
2 |
π |
2 |
π |
4 |
π |
2 |
3π |
8 |
π |
8 |
π |
8 |
5π |
8 |
2 |
π |
8 |
5π |
8 |