1.f(B)=2cosB*(1-cos(π/2+B))+√3cos2B-2cosB=sin2B+√3cos2B=2sin(2B+π/3)=2,B=π/12
2sin(2B+π/3)-m>2恒成立可转化为2sin(2B+π/3)>2+m恒成立,求出2sin(2B+π/3)的值域可知m≤-√3/2-2
2.求sin^2[(B+C)/2]+cos2A=sin^2(π/2-A/2)+cos2A=cos²A+cos2A=(1+cos2A)/2+cos2A=1
a²=b²+c²+2bccosA所以3=b²+c²+2/3bc因为3=b²+c²+2/3bc≥2bc+2/3bc得到bc≤9/8