已知:正方形ABCD,M是AB边的中点,E是AB延长线上一点,连接MD,作MN垂直于DM,与角CBE平分线BN交于点N.
(1)求证:DM=MN
(2)若把上述条件中“M为AB的中点”改为“M为AB上任意一点”,那“MD=MN”还成立吗?为什么?
人气:399 ℃ 时间:2020-03-24 11:18:55
解答
证明:取AD中点F,连接MF正方形ABCD中,M是AB中点DF=AF=AM=BM∠AFM=45°即∠DFM=135BN是∠CBE的角平分线∠EBN=45°即∠MBN=135°所以∠DFM=∠MBNMN垂直于MD∠FDM+∠AMD=90°∠BMN+∠AMD=90°即∠FDM=∠BMN又∠DFM=∠MB...
推荐
- 已知:正方形ABCD,M是AB边的中点,E是AB延长线上一点,连接MD,作MN垂直于DM,与角CBE平分线BN交于点N.
- 如图,已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN垂直于DM且交角CBE的平分线于N.
- 如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于点N.
- M为正方形ABCD边AB的中点,E是AB延长线上的一点,MN⊥DM,交∠CBE的平分线于N.
- 正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN垂直于DM且交角CBE的平分线于N.求证MD=MN.
- 根毛细胞最大的特点是表皮细胞形成的什么?
- 如何提高数学做练习速读
- 观沧海中表现作者雄心壮志诗句
猜你喜欢