> 数学 >
证明恒等式arctanx—1/2arcos(2x/1+x^2)=π/4 (x≥1)
人气:160 ℃ 时间:2019-10-19 16:44:09
解答
设:f(x)=arctanx—1/2arcos(2x/1+x^2),知其当x>=1时,可导.
求得:f'(x) = 0.(恒为0) (仔细求,即会得出)
故知:f(x)=C (为一常数)
为确定此常数,可任意取一个满足x>=1的 x 的值a.从而求出C=f(a).当然我们要取容易计算的.
(本题可取:x=1,x=根号3 等等)
而容易求得:f(1) = pi/4 - (1/2) arccos[2/(1+1)]=pi/4 - (1/2)arccos1= pi/4 - 0= pi/4.
即知:f(x) = pi/4.
即知命题成立.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版