求个概率分布密度的题目
设二维随机变量的联合分布密度为
p(x,y)=c/[(1+x^2)(1+y^2)]
(1)求c (2)求Z=1-3√x的分布密度
第一解的c为 1/∏^2 (1除以“派”的平方) 我自己能解
第二解怎么求
最好还要能简单解释下为什么这么做
人气:406 ℃ 时间:2020-05-14 02:24:31
解答
(1)求c
由∫[-∞,+∞]dx∫[-∞,+∞]p(x,y)dy=1即得c=1/π^2.
(2)求Z=1-3√x的分布密度
是“z等于1减立方根x”吧?
先求X的分布密度:
fX(x)=∫[-∞,+∞]p(x,y)dy=1/[π(1+x^2)]
FZ(z)=P[Z≤z]=P[1-x^(1/3)≤z].[求随机变量函数分布的常规做法]
=P[X≥(1-z)^3]
=∫[(1-z)^3,+∞]1/[π(1+x^2)]dx...[也可以现在就对z求导]
=(1/π)[π/2-arctan(1-z)^3].
fZ(z)=(3/π)*(1-z)^2/[1+(1-z)^6].
推荐
猜你喜欢
- 如果X=5y,那么x和y成( )比例;如果xy=5,那么x和y成( )比例.
- 微分公式问题求解答!谢谢!
- 电路的动态分析
- 甲乙两车同时从ab两地出发,甲车每小时行48米,乙车每小时行40米,两车在距中点32米处相遇,两地相距多少
- 小红5分钟走了300米,照这样的速度,他用15分钟走完了从家到学校的一半路程.小红家到学校有多远?
- 请问can`t take my eyes off you中文歌词
- From now on,love yourself,enjoy living then
- 我一直想知道宇宙是无限大的吗?那最外面是什么呢?