> 数学 >
已知正实数a与b满足a+b=1,求a/(1+b)+b/(1+a)的最大值或最小值.
人气:378 ℃ 时间:2020-04-28 10:07:31
解答

通分有
a/(1+b)+b/(1+a)=(a+a^2+b+b^2)/(1+a+b+ab)
将a+b=1和a^2+b^2=(a+b)^2-2ab=1-2ab带入上式
上式=(2-2ab)/(2+ab)
=[-2*(2+ab)+6]/(2+ab)
=-2+6/(2+ab)
而1=a+b>=2√(ab)
所以ab=-2+6/(2+1/4)=2/3
所以 最小值为2/3 当a=b=1/2取到
又ab>0
所以上式
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版