>
数学
>
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
人气:429 ℃ 时间:2019-08-18 17:19:19
解答
证明:∵点E为AB中点,∴AE=EB
又∵∠ACB=90°,
∴CE=AE=EB,
又∵AF=CE,
∴AF=AE,
∴∠3=∠F,
又EB=EC,ED⊥BC,
∴∠1=∠2(三线合一),
又∠2=∠3,
∴∠1=∠F,
∴CE∥AF,
∴四边形ACEF是平行四边形.
推荐
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
找课文,A man who never gave up .需要全文.
obama received the Nobel Peace Prize ,how to criticize this thing
表示腿的动作的词(30个)
猜你喜欢
2x^3+x^2+1=0的解法~
do you have()(some, any)hamburgers?
九年纪数学题
147乘300%等于多少?
请写出一个二项方程,使他只有一个根,这个方程可以是
造句 赏心悦目
一天吃一个苹果有益于我们的健康 英语怎么说
her name's的缩写
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版