已知F(c,0)是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点,设b>c,则椭圆的离心率e的取值范围
人气:300 ℃ 时间:2019-08-21 08:52:14
解答
∵b>c,∴b^2>c^2=a^2-b^2,∴2b^2>a^2,∴-(b/a)^2<-1/2,
∴e=c/a=√(c/a)^2=√[(a^2-b^2)/a^2]=√[1-(b/a)^2]<√(1-1/2)=√2/2.
∴该椭圆的离心率取值范围是(0,√2/2).
推荐
- 已知F1,F2 是椭圆的两个焦点.满足MF1*MF2 =0的点M总在椭圆内部,则椭圆离心率的取值范围是( )
- 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0) 的左右焦点分别为F1,F2 PF1/PF2=e 则该离心率e的取值范围是
- 椭圆X^2/a^2+y^2/b^2=1的两焦点为F1、F2,P是椭圆上一点,而且PF1*PF2=0,则该椭圆离心率的取值范围?
- 若椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆x^2+y^2=(b/2+c)^2(c^2=a^2-b^2)有4个不同焦点,求离心率取值范围
- 已知F(c,0)是椭圆x^2/a^2+y^2/b^2=1的右焦点,设b>c,则离心率取值范围
- 底面积乘高用字母怎么表示?
- 怎么才能理解汉语词语的意思.
- 爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.00%,到期一次支取,贝贝到期可以拿到多少钱?
猜你喜欢