> 数学 >
设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=0,则E-A和E+A是否可逆
解这种题的思路是什么?
为什么我复习一遍课本后怎么还是不会写呢?
人气:148 ℃ 时间:2020-05-18 05:57:20
解答
另一个方法是这样:
令 B = E-A,则 A = E-B
代入 A^3 = 0
得 E-3B+3B^2-B^3 = 0
所以 B(B^2-3B+3E) = E.
所以 B 可逆 ,且 B^-1 = B^2-3B+3E.
即E-A 可逆,且(E-A)^(-1)=(E-A)^2-3(E-A)+3E=A^2+A+E
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版