设A为n阶非零矩阵,E为n阶单位阵,若A^2+2A=0 为什么一定有E-A必可逆?
人气:454 ℃ 时间:2020-05-20 10:42:46
解答
A^2+2A=0
A^2+2AE-3E^2=-3E
(A-E)(A+3E)=-3E
(E-A)[1/3(A+3E)]=E
E-A可逆.
推荐
- 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=0,则E-A和E+A是否可逆
- 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则E+A是否可逆?
- 1、 A为n阶非零矩阵,A^5=0,A+E与A-E是否可逆 2、设n阶矩阵A(n>2),R(A)=n-2,则|2A+3A*|=
- 已知n阶方阵A,满足A^3+A^2-2A=0,I是n阶单位阵,证明矩阵A+I必可逆
- 设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.
- 夸克带有非整数电荷(上夸克是2/3,下夸克是-1/3),非整数电荷怎么理解?
- 一个等腰三角形顶角与底角的比是4:1,这个等腰三角形三个角的度数分别是多少度?
- what is the relationship between the man and the woman?
猜你喜欢