已知f(x)为偶函数,周期为a,证明对称轴为2a.
人气:465 ℃ 时间:2019-08-20 07:06:54
解答
证明:∵f(x)为偶函数,周期为a
∴f(x)=f(x+a)
∴f(x)=f(x+a)=f(x+4a)
∵f(x)=f(-x)
∴f(x+4a)=f(-x)
∴f(x-2a+4a)=f(-(x-2a))
∴f(2a+x)=f(2a-x)
∴f(x)对称轴为2a
推荐
猜你喜欢
- 一个三角形果园的高60米,底是高的1.25倍,种了750棵果树.平均每棵果树占地多少平方米?
- 写一篇大学社团的英语简介200~300词,
- 设命题p:关于x的不等式a^x>1的解集是{xIx1的解集是{xIx
- 一根长为10米,底面直径为1厘米的粗钢绳,能拉成底面直径为1毫米的细钢绳( )米
- 只有……才……是什么关系的关联词
- 一道数学题;某书每本定价8元,若购书不超过10本,按原价付款,若一次购书10以上,超出10部分打八折
- 一立方厘米的水等于多少千克
- 已知,在△ABC中,AB=AC,周长为16厘米,AC边上的中线BD把△ABC分成周长差为2厘米的两个三角形,求△ABC各边的长