> 数学 >
费马点到三角形顶点的平方和
三角形ABC内部一点P
请求:PA^2+PB^2+PC^2的最小值!
(已知三角形三边长为a,b,c)
那个点可能不是费马点,反正要求:PA^2+PB^2+PC^2的最小值!
lirestreamyy 注意我给的条件,不是坐标,是边长!
人气:235 ℃ 时间:2020-10-01 04:18:24
解答
点是三角形ABC的重心,即是三边中线的交点,重心到三边距离的平方和最小
证明:
设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3)
平面上任意一点为(x,y),则该点到三顶点距离平方和为:
(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2
=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2
=3(x-1/3*(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2
显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值
最小值为 x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版