> 数学 >
z=arctan(x+y)/(x-y)的全微分
人气:412 ℃ 时间:2020-02-29 21:07:24
解答
z=arctan(x+y)/(x-y)
z'x=[(1+y')/(1+(x+y)^2)] /(x-y) +arctan(x+y)(1-y')/(x-y)^2
z'y=[(1+x')/(1+(x+y)^2]/(x-y)+arctan(x+y)(x'-1)/(x-y)^2
dz=z'x dx+ z'y dy
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版