如图,正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的一点,且AE=BF=CG,设△EFG的面积为y,
正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的一点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则Y关于x的函数的图像开口朝
人气:401 ℃ 时间:2019-08-20 11:37:01
解答
不难证明,三角形EFG为等边三角形,则设三角形EFG的边长为a,则y=a²倍根号3/4
因为AE=CG=x,则AG=1-x,而∠A=60°,则有EG=a,利用余弦定理有:
a²=x²+(1-x)²-2x(1-x)cosA即a²=x²+1-2x+x²-x+x²=3x²-3x+1
则y=(3x²-3x+1)倍根号3/4
则函数图形开口朝上
推荐
- 已知正三角形ABC的边长为1,E,F,G别是AB、BC、CA上的点,AE=BF=CG,设三角形EFG的面积为Y,AE的长为X,则Y关于X的函数图象大致是什么?
- 如图,正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的一点,且AE=BF=CG,设△EFG的面积为y,
- 如图,正三角形abc的边长是1,e、f、g分别是ab、bc、ca上的点,切ae=bf=cg.设△efg面积为y,ae长为x.
- 如图,正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的一点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是?
- 已知如图:点E、F分别在等边三角形ABC的边BC、CA上,BE=CF,AE与BF交于点G,求∠AGF的度数.
- 迈克尔逊干涉做出的白光干涉现象是什么?
- 在乘法算式中,一个因数扩大到原来的50倍,要使积不变,另一个因数要( ).
- 根据你对《十二章》的理解完成下面的题目.
猜你喜欢