求使得不等式|x^+px+q|≤2,当1≤x≤5时恒成立的实数对(p,q)
答案是(-6,7)
只用说明为什么会是这个点,它在几何学上有什么意义.
人气:161 ℃ 时间:2019-08-19 22:30:10
解答
假设题目中"x^"后面紧跟个2.
记f(x)=x^2+px+q.这是开口朝上的二次函数,
对称轴-B/2/A=-p/2,最小值C-B^2/4/A=q-p^2/4.
题设条件等价于说,f(x)在定义域[1,5]上的函数值在区间[-2,2]内.
下面按对称轴位置讨论.
若-p/2=-2,(1)
这时,在定义域[1,5]内有最小值f(1),所以-2=f(5)=25+5p+q.(3)
联立(1)(2)(3)无解.
若-p/2>=5,即p=f(1)=1+p+q.(3)'
联立(1)'(2)'(3)'无解.
现在,我们有-10
推荐
- 是否存在实数P使得不等式3X2+PX+6/X2-X+1小于等于6大于等于-9对一切实数X恒成立,若存在,求出P的值
- p为何值时,对任意实数x,不等式-9
- 试问:是否存在实数对(p,q),使得关于x的不等式|x^2+px+q|≤2对任一个1≤x≤5恒成立?若存在,求
- 对于满足0
- P为何值时,不等式x平方-px-2/x平方-x+1
- 绝对非常简单的对数运算问题,
- 有四个实数,前三个数城等比数列积为216,后三个数城等差数列,四个数的和为24,求此四数
- 肝脏的功能血管和营养血管分别是什么?
猜你喜欢